

1 Asking Water with Stones: Designing Playful Dialogues with Water System to
2 Build Connection between Human and Water Ecosystems
3

4 ANONYMOUS AUTHOR(S)
5

21 Fig. 1. Water's Echo User Demonstration: A player begins a conversation with the system after throwing a stone into the water.
22

23 The more-than-human field has contributed numerous opportunities for interacting with nature, animals, plants, and microorganisms.
24 However, few studies have examined water ecosystems. Current water-related work primarily treats water as a medium for human-
25 centered activities, rarely positioning water as an interactive subject. Building upon prior research, we explore how to better integrate
26 water more playfully into digital-physical interactions as an interactive subject. We designed and developed *Water's Echo*, an AI-
27 powered public installation that enables human-water communication through a playful stone-throwing dialogue. We conducted a
28 field study at a local pond, recruiting 15 residents to participate in *Water's Echo*—a playful conversational interaction. Our findings
29 indicate that this playful dialogue approach raises participants' awareness and understanding of surrounding aquatic environments.
30 This research provides insights for design researchers to establish engaging water ecology interactions across cultural communities,
31 promoting a More-than-human perspective in re-examining human-nature relationships.
32

33 CCS Concepts: • **Human-centered computing** → **Natural language interfaces; Contextual design; Interface design prototyping;**
34 Empirical studies in HCI; Sound-based input / output.
35

36 Additional Key Words and Phrases: More-than-human design, WaterHCI, Human-nature interaction, Embodied interaction, Large
37 Language Model (LLM), Conversational agent, Sustainability, Playful interaction, Ecological awareness
38
39

40 **ACM Reference Format:**
41

42 Anonymous Author(s). 2025. Asking Water with Stones: Designing Playful Dialogues with Water System to Build Connection between
43 Human and Water Ecosystems. 1, 1 (October 2025), 10 pages. <https://doi.org/10.1145/nnnnnnnn.nnnnnnnn>
44

45 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
46 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
47 of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
48 servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
49 © 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
50 Manuscript submitted to ACM
51

53 1 Introduction

54 More-than-human [30, 40] is a perspective that allows humans to think and rethink our own identities and human-
 55 nature relationships [13]. For example, prior research has explored incorporating non-human (e.g., microorganisms,
 56 mycelium, and plants) as integral parts of interactive systems, investigating how humans coexist with these non-
 57 human species [9, 14] and how such interactions may influence human awareness of nonhuman life and ecological co-
 58 construction [5]. The water system, as a crucial non-human object, its interaction is still underexplored. As the foundation
 59 of all human material activities and a key collaborator in the operation of human society, a better understanding of the
 60 water ecosystems would benefit environmental sustainability [26]. Hence, we aim to explore how to better integrate
 61 water—this natural element—into everyday social interactions, fostering human-nature interactions, thereby enhancing
 62 our understanding of the water environments that surround our daily lives.
 63

64 Research on water-related interactions primarily concentrates on the WaterHCI field [15, 29, 31]. These interaction
 65 approaches mainly focus on providing convenience and services for humans, predominantly divided into human-
 66 centered applications that provide public services [1, 38], or installation-based research utilizing water as an interactive
 67 medium for artistic performances [7]. Which includes human-centered aquatic recreational interaction facilities [17],
 68 aquatic artistic performances [11, 20, 25], underwater operations [17], and interactive underwater games [29]. However,
 69 these works have not focused on aquatic ecosystems or positioned water as the primary subject of interaction. Apart from
 70 this, a small number of studies [22, 24, 28, 34] have begun to address water environment monitoring and visualization
 71 interactions[34, 35], as well as water pollution detection [10]. these studies try to observe the dynamic changes of
 72 hydrological ecosystems, but fail to establish the connection between people and water. Building upon this research
 73 foundation, we aim to further strengthen the deep resonance and lasting connections that local residents have with
 74 their surrounding aquatic ecosystems. Through continuous and engaging interactions, we hope to enable people to not
 75 only enjoy the playful pleasure of interacting with water, but also gain a deeper understanding of the more-than-human
 76 aquatic environment—including ecology, pollution, history, and other data that deserve to be seen.
 77

78 To design engaging interaction system with water and investigate their impact on residents living near aquatic
 79 environments, we selected a local park pond in Finland as our research site. This study aims to enhance local residents'
 80 awareness and understanding of the surrounding aquatic ecosystem through playful interactive approaches, thereby
 81 fostering a harmonious relationship between humans and nature. Our research include:
 82

- 83 • System Design: We designed and developed an interactive prototype system named *Water's Echo*, firstly,
 84 it has conversational AI with data fusion capabilities, *Water's Echo* integrates multi-source data, including
 85 real-time water quality monitoring data from websites, on-site collected pollution parameters, and historical
 86 environmental data of the pond. This creates an AI chatbot embodying water as the conversational agent.
 87 Through dialogue with the chatbot, residents can comprehensively learn about the pond's "life story" and
 88 related ecological information. Secondly, it has embodied interaction design, to enhance engagement and
 89 participation, the system moves beyond traditional text-based dialogue by implementing a physical interaction
 90 method—"throwing stones into water." The conversation is triggered when a stone enters the water, allowing
 91 users to engage in dialogue while facing the pond, creating a more natural and immersive interactive experience.
 92
- 93 • User Study: To explore the impact and potential challenges of this water-centric conversational interaction
 94 system, on nearby residents and the ecological environment, we conducted a 3-day field user study. Using
 95 random recruitment, we invited 15 local residents living near the pond (valid participants) to experience the
 96 system by throwing stones into the water to initiate dialogue with "the water". Throughout the study, we
 97

105 recorded complete conversation logs between users and *Water's Echo*, and conducted semi-structured interviews
106 after each experience session to gather in-depth user feedback and experiential insights.
107

108 Our experimental results demonstrate that, 1) Interaction System Preferences: Compared to traditional text-based
109 conversational interfaces, the embodied interaction approach mediated by stone-throwing garnered strong user prefer-
110 ence and willingness to participate. This play interaction model, which combines physical action with digital dialogue,
111 significantly enhanced user engagement and experience. 2) Cognitive Transformation: The majority of participants
112 experienced notable cognitive shifts regarding the pond's aquatic environment after dialoguing with *Water's Echo*.
113 Users no longer perceived the pond as a static landscape element, but instead developed a more multidimensional,
114 dynamic, and vivid understanding of its ecosystem. This study proposes a novel human-nature interaction paradigm that
115 transcends traditional environmental education media (such as textual descriptions, infographics, and static museum
116 displays). 3) Educational and Sustainability Implications: Through the design strategy of playful dialogue, the system
117 achieves engagement through enjoyable interaction while simultaneously deepening users' understanding of the
118 pond's aquatic environmental conditions during conversation, demonstrating long-term educational and sustainability
119 significance. Our research provides a reference for future design researchers to establish engaging water ecology
120 interaction modalities across different cultural communities, promoting a re-examination of human-nature relationships
121 through a non-anthropocentric lens.
122

123 2 Related Work

124 2.1 WaterHCI

125 Water has long been explored as a material and medium for HCI, owing to its unique physical and sensory properties such
126 as fluidity, reflectivity, and tactility [32]. Some research focuses on the interaction of water sports or underwater games,
127 for example interactive activities and entertainment devices in water include smart paddleboards and other auxiliary
128 tools [19], underwater AR exploration toy interactive games [29], etc. Some research has investigated how water can act
129 as an expressive interface for artistic and experiential interaction [39]. Early examples such as the Hydraulophone [21]
130 allowed users to create musical sounds through direct contact with flowing water, while installations like aquaTop
131 display [16, 31] and liquid display [3, 15] leveraged water surfaces for visual or gestural interaction. These studies
132 demonstrate water's potential as both a performative and communicative medium, capable of supporting embodied and
133 sensory-rich experiences.
134

135 Beyond these studies, water has also been used as an interface for environmental communication and education.
136 Environment visualization projects have employed water to represent dynamic data about ecological change, such as
137 river levels, rainfall, and pollution [6, 10, 27]. Other studies have explored underwater operations and data collection
138 tools for scientific or recreational purposes [35], including smart paddleboards for training and fitness [19]. These
139 approaches demonstrate the versatility of water in HCI, as both a natural sensor system and a data-driven interface for
140 monitoring environmental conditions.
141

142 However, despite these advances, most existing WaterHCI projects remain grounded in a human-centered design
143 paradigm. Water is often treated as a manipulable material or a visual metaphor, serving human experience rather than
144 expressing its own agency. Such designs tend to mirror human behaviors and social activities, using water as a tool
145 for play, visualization, or education rather than acknowledging it as a living system or ecological collaborator. This
146 anthropocentric framing limits opportunities to explore more-than-human perspectives, where water itself can be seen
147 as a participant in the interaction. To move beyond these limitations, Our research aims to ensure the fun of human
148

157 interaction and play, while using the aquatic environment as the main object of interaction. In the process of interaction
 158 and communication, we strive to achieve a deeper engagement and understanding with the aquatic environment.
 159

160
161 2.2 AI and the Construction of Non-Human Emotions
 162

163 In parallel, recent research has explored how artificial intelligence (AI) can enable new forms of expression and affective
 164 communication for non-human entities. In the field of affective computing, AI-driven emotion models have been
 165 applied to robots, virtual agents, and artificial life systems to simulate emotional states and behaviors [2, 4]. A lot of
 166 interactive art installations have also used AI to interpret natural data, such as temperature, humidity, or soil moisture,
 167 and translate it into affective expressions, allowing audiences to “feel” the emotions of plants or landscapes [8]. These
 168 works leverage AI as a mediator that bridges human perception and non-human systems, giving rise to emotionally
 169 resonant interactions that challenge anthropocentric assumptions about affect. Recent advances in generative AI and
 170 multimodal learning have further expanded this field, enabling the translation of environmental or sensory signals into
 171 expressive outputs. For instance, neural networks have been trained to map oceanic waveforms or bioacoustic data to
 172 musical or visual forms [34], creating new ways to perceive and empathize with marine life. Similarly, weather-driven
 173 generative art projects [33] use AI to interpret natural fluctuations as emotional states, prompting reflection on the
 174 sentience and sensitivity of non-human systems. In these examples, emotion becomes a medium through which AI
 175 reconfigures human relationships with non-human entities, transforming data into narrative, and matter into feeling.
 176

177 In our research, we collect as much data about the water environment as possible to better establish the persona of
 178 the water AI chatbot. We will refer to previous work on affective computing[41] as much as possible. When users chat
 179 with *Water’s Echo*, they can feel the differences in its character and way of speaking due to the data it has. This allows
 180 participants to immerse themselves in understanding the ecological environment and the impact of human behavior on
 181 local water during the conversation.
 182

183
184 3 Water’s Echo: System Design
 185

186 *Water’s Echo* is an AI-powered public installation enabling dialogue with aquatic environments. Players throw stones
 187 into water to trigger conversations. Once initiated, players can continue throwing stones for multiple dialogue exchanges,
 188 with each water-impact sound triggering a new conversational turn. During dialogue, *Water’s Echo* utilizes collected
 189 environmental data to express information about the water’s history, background, current weather conditions, and
 190 nutrient pollution levels. We employed Ali Bailian large language models(LLM) to construct a persona based on
 191 multidimensional data (e.g.temperature, soil moisture, phosphorus load, nitrogen load, algae presence) to shape water
 192 personality (Fig 2), allowing users to intimately understand the world from water’s first-person perspective and the
 193 challenges it faces.The collected data can be found in the supplementary materials.
 194

195 **User Interaction Flow:** 1) Players pick up stones placed around the installation and throw them into water, where
 196 underwater contact microphone sensors detect the impact; 2) Upon receiving the signals, *Water’s Echo* responds with
 197 greetings and ice-breaking prompts to engage participants. 3) Participants can throw additional stones to initiate new
 198 conversational threads or continue the ongoing dialogue with *Water’s Echo*.
 199

200 **System Compliment:** 1) Arduino underwater microphone sensor - detects and identifies stone-impact sounds; 2)
 201 Arduino underwater chemical sensors - monitors sulfide and heavy metal pollution in real-time; 3) AI workflow software
 202 - retrieves daily water quality and nutrient data from Finnish monitoring websites, incorporates local water history,
 203 origins, significant events, and weather data, then generates MBTI-based personas[12, 36] through specified prompts
 204

209 to deliver emotionally responsive dialogues; 4) Questions and dialogue content revolve around aquatic ecological
 210 background data (detailed workflow in supplementary materials).

212 Our water persona-data mapping process references prior research[37]. While not representing complete local water
 213 ecosystem data, but this does not affect our research objectives. Our research aims to enhance water environment
 214 awareness through playful conversational interaction which use embodied interaction rather than rely on extensive text,
 215 websites, museums, or posters for environmental education. This persona-based playful dialogue approach provides an
 216 engaging format for human-nature interaction.

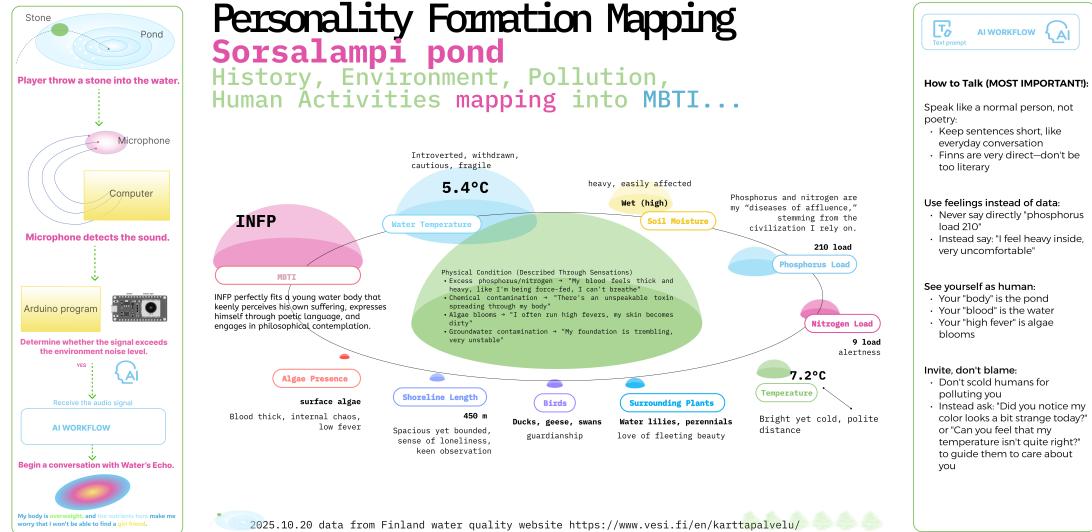


Fig. 2. The composition of *Water's Echo* interaction system

4 User Study

4.1 Research Method

246 We conducted our user study at a residential park pond near the university. Although the pond is celebrated for its
 247 picturesque scenery, monitoring data and officially published pollution levels indicate severe contamination—a striking
 248 contrast that formed the central theme of players' dialogues in *Water's Echo*. We deployed the *Water's Echo* system in
 249 the pond and randomly recruited local residents who were walking nearby to participate in testing. We recruited a total
 250 of 20 random participants, with ages evenly distributed between 20-60 years old. All players experienced *Water's Echo*
 251 and participated in brief 5-minute interviews. We recorded both the dialogue content between players and *Water's Echo*,
 252 as well as the interview responses using audio recording software. After data analysis and organization, we obtained 15
 253 valid datasets. Our interview questions are included in the supplementary materials.

4.2 Result

258 4.2.1 *Players established a relationship with the local water environment.* All players learned about *Sorsalampi*'s current
 259 environmental conditions, pollution levels, history, and most information related to the pond during their conversations.

261 In interviews, they expressed surprise and curiosity about the discrepancy between *Sorsalampi*'s beautiful appearance
 262 and its actual pollution status. P1 remarked: *"I walk here every day, but I never knew the pollution was so severe. If he*
 263 *hadn't told me himself, I would never have known—I can only say that because everything looks so beautiful."* During
 264 conversations, most players proactively inquired about how to help *Sorsalampi* address its pollution issues. Some
 265 players even felt sad at the end because this anthropomorphic dialogue made them realize they needed to care about
 266 surrounding aquatic environments but didn't know how to help *Sorsalampi*. P10 shared: *"I don't know how I should help*
 267 *him, because he keeps telling me he has an 'affluence disease'—he says he has too many nutrients. He only looks good on*
 268 *the surface, but deep down he's very sad."* Some players expressed anticipation about *Sorsalampi*'s emotional state the
 269 next day. P14 asked: *"He seems very sad. Can I come see him again tomorrow?"* Several residents described *Sorsalampi*
 270 as someone who appears cheerful on the outside but is actually melancholic inside. Most players characterized this
 271 as a "normal person," while others described it as "a familiar stranger." P3 reflected: *"I walk my dog here every day. I*
 272 *thought I knew him well enough, but his mood, his voice, what he wanted to say—all of this felt so unfamiliar to me. This*
 273 *was a very special experience."* Our water chatbot, constructed using local aquatic environmental data, not only raised
 274 residents' awareness of non-human entities but also fostered their attention to and connection with surrounding water
 275 environments during conversations with local residents.
 276

277 4.2.2 *More interesting and diverse play interaction with water.* The majority of players expressed interest in the playful
 278 interaction of throwing stones to initiate dialogue, noting that this play-based approach created a sense of ritual before
 279 starting conversations, making them more willing to participate in dialoguing with water. This demonstrates that
 280 engaging playful interaction is a crucial step in establishing connections between people and water. However, some
 281 users provided constructive suggestions for enhancing water-based playful interactions. P15 stated: *"I think the stones*
 282 *should also convey my emotional feedback to the water, not just serve as a trigger switch. For example, if I throw a very large*
 283 *or heavy stone, he should know that I'm in a bad mood."* Other players expressed desires for more diverse interaction
 284 modalities. P1 suggested: *"We could use a slingshot to shoot stones into the water—that would feel more interesting."* P14
 285 shared: *"I actually wish my stone-throwing could be like drawing fortune sticks. When I throw it into the water, the AI*
 286 *could tell me what I should do in the future, help with my inner confusion, and so on."* Taken together, players desire
 287 rich and diverse interaction modalities during water dialogues, rather than being limited to stone-throwing or simple
 288 conversation. Further enhancing the enjoyment of human-water environment interaction would establish deeper
 289 connections.
 290

291 4.2.3 *More sustainable interactions with non-human entities.* During interviews, numerous users provided insights
 292 regarding sustainability. All users considered this playful conversational interaction approach sustainable. Many
 293 participants noted that compared to museum educational explanations, this interactive dialogue format deepened their
 294 understanding of surrounding water environments' background information and current conditions. P6 reflected: *"This*
 295 *is definitely much more vivid than reading about town pollution on social media through my phone. I feel like this is a*
 296 *friend, a living one. I'll come to check on him during my next walk to see how he's doing recently."* Beyond the sustainability
 297 of repeated conversations at the same pond, P9 even suggested that this playful dialogue should be deployed across
 298 different regions for comparison: *"I think if you place this in other countries with severe pollution, the AI's personality would*
 299 *probably be quite different. I really want to try dialoguing with those heavily polluted countries and see what happens."*
 300 This sustainability lies in how *Water's Echo* sparks people's curiosity about other aquatic ecosystems' conditions and
 301 stories. Finally, some players expressed sustainable behavioral intentions for the future. P1, who shared many personal
 302 feelings and private topics with *Water's Echo*, stated: *"I think he's very romantic—he's my new friend now. You know,*
 303 *Manuscript submitted to ACM*

313 sometimes coming here to relieve my stress would be a great choice. I hope every park has an AI like this. Now Sorsalampi is
314 as lonely as I am."

315 Taken together, our AI public installation, through its playful conversational interaction format, demonstrates
316 sustainability across multiple dimensions for different players—including environmental education, cross-regional
317 pollution comparison, more embodied interaction, and long-term conversational companionship. This showcases the
318 sustainable potential of playful dialogue-based water interaction.

321 5 Discussion

322 5.1 From Interactive Medium to Interactive Subject

323 Water's Echo innovatively transforms water from a traditional interaction medium into an interactive subject capable
324 of communicating with humans. The project personifies local water bodies using environmental data (water quality,
325 historical information) and an anthropomorphic MBTI profile to construct an embodied personality. The act of throwing
326 a stone and the resulting acoustic ripples serve as a conversational trigger, linked to an AI agent that speaks in the first
327 person with local residents. This approach complements previous WaterHCI work [6, 10, 27], which typically treated
328 water as a visualization tool, sensing interface, or data carrier.

329 5.2 Gamified Expression of Interaction

330 The game-like mechanism of initiating dialogue through stone-throwing establishes a clear, lightweight, and repeatable
331 ritual for entering interaction. These playful rules help participants focus on the real-time feedback of the water surface
332 and the immediate context. Compared with text-based interfaces, this gamified trigger lowers the entry barrier, enhances
333 engagement, and strengthens immersion.

334 Most participants intuitively understood "throwing a stone" as a signal to start communication and showed greater
335 willingness to engage with the water as an interactive being rather than a passive landscape[18, 23]. For example, P1
336 said, "I walk here every day but didn't know how polluted it is," P10 described the water's eutrophication as a "disease
337 of affluence," P3 felt "a strange mood in a familiar place," and P14 said they wanted to "see how he feels tomorrow." This
338 play-driven emotional closeness fostered both curiosity and empathy, raising residents' awareness and concern for
339 their local aquatic ecology. Participants also proposed more expressive modes of engagement: P1 suggested using a
340 slingshot for more fun, P15 proposed linking stone size or throwing strength to emotional tone, and P14 imagined a
341 "fortune-drawing" response mechanism. These ideas show that the act of throwing is not merely a trigger but a carrier
342 of personal meaning and self-expression. When gestures become expressive inputs, human–environment interaction
343 becomes more immersive and sticky. Overall, the combination of personified dialogue and playful interaction encourages
344 more intimate and sustained connections between people and their surrounding water environments.

345 5.3 Generality of Embodied Interaction

346 The "stone-throwing" ritual demonstrates strong cross-site transferability as both an entry gesture and turn-taking
347 mechanism. Participants found throwing natural for initiating communication and refocusing on the water surface (P1,
348 P14). First-person narration of local environmental data transformed abstract information into situated experiences,
349 suggesting this combination forms a reusable core structure for diverse water contexts. Adaptation strategies emerged
350 from participant feedback: P15 proposed mapping throwing energy to response tone and topic for expressive input; P1
351 suggested site-specific triggers like slingshots; P14's "fortune-drawing" idea introduced culturally meaningful uncertainty.

365 These insights indicate designers should maintain the ritualistic, turn-based structure while customizing gesture forms
 366 and feedback styles to ensure accessibility and site-specific character. Two long-term engagement patterns emerged: 1)
 367 **Revisiting and comparison.** Participants expressed willingness to revisit and compare experiences (P14: "see how
 368 it feels tomorrow"; P9: compare regional waters), indicating that local water quality and history variations naturally
 369 shape narrative diversity. 2) **From empathy to action.** Participants asking "What can I do?" suggests that low-barrier
 370 action prompts (e.g., monitoring, reducing disturbance) can channel emotional resonance into environmental practice.
 371 This supports a cross-scenario design logic: use stone-throwing and first-person local narration as the interaction core,
 372 adjust gesture expressiveness and feedback per site, and leverage data-driven nuances to encourage revisiting and
 373 comparison, sustaining engagement and community attachment across aquatic contexts.
 374
 375

377 5.4 Design Insights and Implications

378 This study demonstrates that embodied, first-person interaction significantly increases public engagement with natural
 379 environments. The stone-throwing mechanism anchors attention to the water surface and establishes an interactive
 380 rhythm that encourages conversation and extended on-site engagement. By grounding dialogue in local data and
 381 history, abstract information becomes personified, transforming water from passive landscape into relational partner.
 382 Participants' suggestions—linking throw intensity or stone size to emotional tone—reveal the potential for expressive,
 383 personalized gestures. Three design recommendations emerge: 1) Expressive responsiveness: Recognize and reflect
 384 variations in gesture through adaptive tone and content to enhance immersion. Update the embodied agent's expression
 385 based on local environmental changes or highlight cross-site contrasts to encourage revisits. 2) Sustainable boundaries:
 386 Use only locally sourced natural materials to avoid ecological disturbance; avoid excessive anthropomorphism; provide
 387 accessible alternatives for inclusivity. 3) Actionable empathy: Transform playful encounters into ecological care by
 388 motivating ongoing engagement. Overall, *Water's Echo* offers a replicable, scalable framework for public environmental
 389 interaction—converting momentary encounters into sustained ecological empathy and action.
 390
 391

395 6 Conclusion

396 To establish connections between people and aquatic environments, we designed *Water's Echo*—an AI-powered public
 397 installation enabling playful dialogue through stone-throwing. The AI builds contextually appropriate personas based
 398 on water environment data, local history, and background information, revealing insights throughout the conversation.
 399 This embodied interaction helps people better understand their surrounding water environments. We conducted a
 400 user study at a park pond with 15 participants who engaged in stone-throwing conversations with water. Qualitative
 401 analysis of interviews revealed that all participants experienced cognitive shifts regarding local water environments
 402 and preferred this intimate interaction modality. Our research provides a reference for designing engaging water
 403 ecology interactions across cultural communities, promoting non-anthropocentric re-examination of human-nature
 404 relationships.
 405
 406

408 7 Acknowledgments of the Use of AI

409 We use LLM ChatGPT-4o in manuscript preparation with the prompt "Give me some connecting words to tie this quote
 410 to the previous theory." to achieve smooth integration of quotes and references. We also use ChatGPT-4o in language
 411 refinement with the prompt "Help me correct the grammatical errors in this text." to achieve grammar correction.
 412 Finally, ChatGPT-4o was applied in translation with the prompt "Translate into English" to achieve accurate bilingual
 413 alignment. Authors take responsibility for the output and use of AI in this paper.
 414
 415

417 **References**

418 [1] Ernesto Arroyo, Leonardo Bonanni, and Nina Valkanova. 2012. Embedded interaction in a water fountain for motivating behavior change in public
419 space. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems* (Austin, Texas, USA) (CHI '12). Association for Computing
420 Machinery, New York, NY, USA, 685–688. doi:10.1145/2207676.2207773

421 [2] Elizabeth Broadbent, Mark Billinghurst, Samantha G Boardman, and P Murali Doraiswamy. 2023. Enhancing social connectedness with companion
422 robots using AI. *Science robotics* 8, 80 (2023), eadi6347.

423 [3] Mark Cervenka and G Yvonne Kendall. 2009. Brian Ransom's: interdisciplinary art: the ceramic artist creates" sound sculptures" with his art works
424 and other elements such as water and, especially, wind. *Flutist Quarterly* (2009), 20–24.

425 [4] Priya Chakriswaran, Durai Raj Vincent, Kathiravan Srinivasan, Vishal Sharma, Chuan-Yu Chang, and Daniel Gutiérrez Reina. 2019. Emotion
426 AI-driven sentiment analysis: A survey, future research directions, and open issues. *Applied Sciences* 9, 24 (2019), 5462.

427 [5] Michelle Chang, Chenyi Shen, Aditi Maheshwari, Andreea Danilescu, and Lining Yao. 2022. Patterns and Opportunities for the Design of
428 Human-Plant Interaction. In *Proceedings of the 2022 ACM Designing Interactive Systems Conference* (Virtual Event, Australia) (DIS '22). Association
429 for Computing Machinery, New York, NY, USA, 925–948. doi:10.1145/3532106.3533555

430 [6] Hao Chen, Chaoyang Fang, and Xin Xiao. 2023. Visualization of environmental sensing data in the lake-oriented digital twin world: Poyang Lake as
431 an example. *Remote Sensing* 15, 5 (2023), 1193.

432 [7] Weijen Chen, Yang Yang, Kao-Hua Liu, Yun Suen Pai, Junichi Yamaoka, and Kouta Minamizawa. 2024. Cymatics Cup: Shape-Changing Drinks by
433 Leveraging Cymatics. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems* (Honolulu, HI, USA) (CHI '24). Association
434 for Computing Machinery, New York, NY, USA, Article 861, 19 pages. doi:10.1145/3613904.3642920

435 [8] Xiaowei Chen and Zainuddin Ibrahim. 2023. A comprehensive study of emotional responses in AI-enhanced interactive installation art. *Sustainability*
436 15, 22 (2023), 15830.

437 [9] Yuning Chen and Larissa Pschetz. 2024. Microbial Revolt: Redefining biolab tools and practices for more-than-human care ecologies. In *Proceedings
438 of the 2024 CHI Conference on Human Factors in Computing Systems* (Honolulu, HI, USA) (CHI '24). Association for Computing Machinery, New York,
439 NY, USA, Article 707, 16 pages. doi:10.1145/3613904.3641981

440 [10] Yating Dai, Harpreet Sareen, and Yasuaki Kakehi. 2025. *Sonifying Aquatic Plant Photosynthesis: A Music Generation System for Everyday Engagement
441 and Care*. Association for Computing Machinery, New York, NY, USA, 452–455. <https://doi.org/10.1145/3715668.3736347>

442 [11] Mohsen Ensfajoo, Alexander Bakogeorge, Chau Nguyen, Alexander Verni, Finch Gabriel Assadoullaev, Vivian Fung, David McFarlane, Paul H.
443 Dietz, Fanny Chevalier, and Ali Mazalek. 2024. Hydrone: Bringing Interactivity to Small Water Features. In *Companion Proceedings of the 2024
444 Annual Symposium on Computer-Human Interaction in Play* (Tampere, Finland) (CHI PLAY Companion '24). Association for Computing Machinery,
445 New York, NY, USA, 64–70. doi:10.1145/3665463.3678785

446 [12] Adrian Furnham. 2020. Myers-Briggs type indicator (MBTI). In *Encyclopedia of personality and individual differences*. Springer, 3059–3062.

447 [13] Marco Gillies and Tianyuan Zhang. 2025. Reawakening Sensibility to the More than Human. *Interactions* 32, 6 (Oct. 2025), 46–49. doi:10.1145/3767697

448 [14] Eduard Georges Groutars, Raphael Kim, and Elvin Karana. 2024. Designing living artefacts for multispecies interactions: An ecological approach.
449 *International Journal of Design* 18, 2 (2024), 59.

450 [15] Lode Hoste and Beat Signer. 2014. Water Ball Z: an augmented fighting game using water as tactile feedback. In *Proceedings of the 8th International
451 Conference on Tangible, Embedded and Embodied Interaction* (Munich, Germany) (TEI '14). Association for Computing Machinery, New York, NY,
452 USA, 173–176. doi:10.1145/2540930.2540946

453 [16] Hideki Koike, Yasushi Matoba, and Yoichi Takahashi. 2013. AquaTop display: interactive water surface for viewing and manipulating information in
454 a bathroom. In *Proceedings of the 2013 ACM international conference on Interactive tabletops and surfaces*. 155–164.

455 [17] Michael Lombardi, Winslow Burleson, Jeff Godfrey, and Richard Fryburg. 2013. An experimental deployment of a portable inflatable habitat in open
456 water to augment lengthy in-water decompression by scientific divers. *Marine Technology Society Journal* 47, 6 (2013), 52–63.

457 [18] Yingtong Lu, Zhuying Li, and Ding Ding. 2024. Light Up Fireflies: Towards Understanding the Design of Interpersonal Bodily Intertwinement
458 in Bodily Play. In *Companion Proceedings of the 2024 Annual Symposium on Computer-Human Interaction in Play* (Tampere, Finland) (CHI PLAY
459 Companion '24). Association for Computing Machinery, New York, NY, USA, 169–174. doi:10.1145/3665463.3678813

460 [19] Steve Mann, Jaden Bhimani, Samir Khaki, and Calum Leaver-Peyra. 2023. Smart paddleboard and other assistive veyances. In *2022 IEEE International
461 Conference on Cyborg and Bionic Systems (CBS)*. IEEE, 298–305.

462 [20] Steve Mann, Ryan Janzen, Jason Huang, Matthew Kelly, Lei Jimmy Ba, and Alexander Chen. 2010. User-interfaces based on the water-hammer
463 effect: water-hammer piano as an interactive percussion surface. In *Proceedings of the Fifth International Conference on Tangible, Embedded, and
464 Embodied Interaction* (Funchal, Portugal) (TEI '11). Association for Computing Machinery, New York, NY, USA, 1–8. doi:10.1145/1935701.1935703

465 [21] Steve Mann, Ryan Janzen, and Mark Post. 2006. Hydraulophone design considerations: Absement, displacement, and velocity-sensitive music
466 keyboard in which each key is a water jet. In *Proceedings of the 14th ACM international conference on Multimedia*. 519–528.

467 [22] Steve Mann, Faraz Sadrzadeh-Afsharazar, Samir Khaki, Zhao Lu, Christina Mann, and Jaden Bhimani. 2022. WaterHCI Part 1: Open Water Monitoring
468 with Realtime Augmented Reality. In *2022 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems
469 (SPICES)*, Vol. 1. 49–54. doi:10.1109/SPICES52834.2022.9774174

470 [23] Matthew Martin, James Charlton, and Andy M. Connor. 2014. Augmented Body: Changing Interactive Body Play. In *Proceedings of the 2014
471 Conference on Interactive Entertainment* (Newcastle, NSW, Australia) (IE2014). Association for Computing Machinery, New York, NY, USA, 1–4.

469 doi:10.1145/2677758.2677790

470 [24] Koichi Miyazaki and Hiroaki Tobita. 2018. SinkAmp: Interactive Sink to Detect Living Habits for Healthcare and Quality of Life. In *Companion*
471 *Proceedings of the 23rd International Conference on Intelligent User Interfaces* (Tokyo, Japan) (*IUI '18 Companion*). Association for Computing
472 Machinery, New York, NY, USA, Article 30, 2 pages. doi:10.1145/3180308.3180339

473 [25] Maria F. Montoya. 2024. Towards the Design of Playful Water Experiences using Interactive Technology. In *Companion Proceedings of the 2024*
474 *Annual Symposium on Computer-Human Interaction in Play* (Tampere, Finland) (*CHI PLAY Companion '24*). Association for Computing Machinery,
475 New York, NY, USA, 434–437. doi:10.1145/3665463.3678849

476 [26] Florian 'Floyd' Mueller, Maria F. Montoya, Sarah Jane Pell, Leif Oppermann, Mark Blythe, Paul H Dietz, Joe Marshall, Scott Bateman, Ian Smith,
477 Swamy Ananthanarayan, Ali Mazalek, Alexander Verni, Alexander Bakogeorge, Mathieu Simonnet, Kirsten Ellis, Nathan Arthur Semertzidis,
478 Winslow Burleson, John Quarles, Steve Mann, Chris Hill, Christal Clashing, and Don Samitha Elvitigala. 2024. Grand challenges in WaterHCI.
479 In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems* (Honolulu, HI, USA) (*CHI '24*). Association for Computing
480 Machinery, New York, NY, USA, Article 225, 18 pages. doi:10.1145/3613904.3642052

481 [27] Fayma Mushtaq and Majid Farooq. 2023. Significance of geo-visualization tools for pollution monitoring. In *Geospatial Analytics for Environmental*
482 *Pollution Modeling: Analysis, Control and Management*. Springer, 353–384.

483 [28] Ken Nakagaki, Pasquale Totaro, Jim Peraino, Thariq Shihipar, Chantine Akiyama, Yin Shuang, and Hiroshi Ishii. 2016. HydroMorph: Shape Changing
484 Water Membrane for Display and Interaction. In *Proceedings of the TEI '16: Tenth International Conference on Tangible, Embedded, and Embodied*
485 *Interaction* (Eindhoven, Netherlands) (*TEI '16*). Association for Computing Machinery, New York, NY, USA, 512–517. doi:10.1145/2839462.2856517

486 [29] Leif Oppermann, Lisa Blum, and Marius Shekow. 2016. Playing on AREEF: evaluation of an underwater augmented reality game for kids. In
487 *Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services* (Florence, Italy) (*MobileHCI '16*).
488 Association for Computing Machinery, New York, NY, USA, 330–340. doi:10.1145/2935334.2935368

489 [30] Emily O'Gorman and Andrea Gaynor. 2020. More-than-human histories. *Environmental History* (2020).

490 [31] Sarah Jane Pell and Florian Mueller. 2013. Gravity well: underwater play. In *CHI '13 Extended Abstracts on Human Factors in Computing Systems*
491 (Paris, France) (*CHI EA '13*). Association for Computing Machinery, New York, NY, USA, 3115–3118. doi:10.1145/2468356.2479624

492 [32] Frank Hays Rainwater and Leland Lincoln Thatcher. 1960. *Methods for collection and analysis of water samples*. Number 1454-1458. US Government
493 Printing Office.

494 [33] Janine Randerson. 2018. *Weather as medium: Toward a meteorological art*. MIT Press.

495 [34] Marcel Zaes Sagesser and Enza Migliore. 2025. *Can We Still Hear the Ocean? How the Artifact Q4 101 Translates Shenzhen Underwater Recordings into*
496 *an Interactive System*. Association for Computing Machinery, New York, NY, USA, 169–174. <https://doi.org/10.1145/3715668.3736389>

497 [35] Surabhi Shrivastava, Souvik Barat, Shankar Kausley, Vinay Kulkarni, and Beena Rai. 2025. River Digital Twin for Water Quality Prediction. In
498 *Proceedings of the Winter Simulation Conference* (Orlando, Florida, USA) (*WSC '24*). IEEE Press, 608–619.

499 [36] Guangzhi Sun, Xiao Zhan, and Jose Such. 2024. Building Better AI Agents: A Provocation on the Utilisation of Persona in LLM-based Conversational
500 Agents. In *Proceedings of the 6th ACM Conference on Conversational User Interfaces* (Luxembourg, Luxembourg) (*CUI '24*). Association for Computing
501 Machinery, New York, NY, USA, Article 35, 6 pages. doi:10.1145/3640794.3665887

502 [37] Quan Tu, Chuanqi Chen, Jinpeng Li, Yanran Li, Shuo Shang, Dongyan Zhao, Ran Wang, and Rui Yan. 2023. CharacterChat: Learning towards
503 Conversational AI with Personalized Social Support. *arXiv:2308.10278 [cs.CL]* <https://arxiv.org/abs/2308.10278>

504 [38] Loes van Renswouw, Yvonne van Hamersveld, Hugo Huibers, Steven Vos, and Carine Lallemand. 2022. Fontana: Triggering Physical Activity
505 and Social Connectedness through an Interactive Water Installation. In *Extended Abstracts of the 2022 CHI Conference on Human Factors in*
506 *Computing Systems* (New Orleans, LA, USA) (*CHI EA '22*). Association for Computing Machinery, New York, NY, USA, Article 462, 7 pages.
507 doi:10.1145/3491101.3519765

508 [39] Maria Montoya Vega, Ian Smith, Christal Clashing, Rakesh Patibanda, Swamy Ananthanarayan, Sarah Jane Pell, et al. 2024. WaterHCI: Water in
509 Human-Computer Interaction. *Foundations and Trends® in Human-Computer Interaction* 18, 4 (2024), 338–412.

510 [40] Sarah Whatmore. 2006. Materialist returns: practising cultural geography in and for a more-than-human world. *Cultural geographies* 13, 4 (2006),
511 600–609.

512 [41] Mengke Wu, Kexin Quan, Weizi Liu, Mike Yao, and Jessie Chin. 2025. Incorporating Personality into AI Writing Companions: Mapping the
513 Design Space. In *Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems* (*CHI EA '25*). Association for
514 Computing Machinery, New York, NY, USA, Article 341, 9 pages. doi:10.1145/3706599.3720185

515

516

517

518

519

520 Manuscript submitted to ACM